Computing and Visualizing Constant-Curvature Metrics on Hyperbolic 3-Manifolds with Boundaries

نویسندگان

  • Xiaotian Yin
  • Miao Jin
  • Feng Luo
  • Xianfeng Gu
چکیده

Almost all three dimensional manifolds admit canonical metrics with constant sectional curvature. In this paper we proposed a new algorithm pipeline to compute such canonical metrics for hyperbolic 3manifolds with high genus boundary surfaces. The computation is based on the discrete curvature flow for 3-manifolds, where the metric is deformed in an angle-preserving fashion until the curvature becomes uniform inside the volume and vanishes on the boundary. We also proposed algorithms to visualize the canonical metric by realizing the volume in the hyperbolic space H, both in single period and in multiple periods. The proposed methods could not only facilitate the theoretical study of 3-manifold topology and geometry using computers, but also have great potentials in volumetric parameterizations, 3D shape comparison, volumetric biomedical image analysis and etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Constant-Curvature Metrics for Hyperbolic 3-Manifolds with Boundaries Using Truncated Tetrahedral Meshes

Every surface in the Euclidean space R3 admits a canonical Riemannian metric that has constant Gaussian curvature and is conformal to the original metric. Similarly, 3manifolds can be decomposed into pieces that admit canonical metrics. Such metrics not only have theoretical significance in 3-manifold geometry and topology, but also have potential applications to practical problems in engineeri...

متن کامل

Discrete Curvature Flow for Hyperbolic 3-Manifolds with Complete Geodesic Boundaries

Every surface in the three dimensional Euclidean space have a canonical Riemannian metric, which induces constant Gaussian curvature and is conformal to the original metric. Discrete curvature flow is a feasible way to compute such canonical metrics. Similarly, three dimensional manifolds also admit canonical metrics, which induce constant sectional curvature. Canonical metrics on 3manifolds ar...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Constant Scalar Curvature Metrics on Boundary Complexes of Cyclic Polytopes

In this paper we give examples of constant scalar curvature metrics on piecewise-flat triangulated 3-manifolds. These types of metrics are possible candidates for “best” metrics on triangulated 3-manifolds. In the pentachoron, the triangulation formed by the simplicial boundary of the 4-simplex, we find that its stucture is completely deterimed with a vertex transitive metric. Further this metr...

متن کامل

Existence and Uniqueness of Constant Mean Curvature Foliation of Asymptotically Hyperbolic 3-manifolds

We prove existence and uniqueness of foliations by stable spheres with constant mean curvature for 3-manifolds which are asymptotic to Anti-de Sitter-Schwarzschild metrics with positive mass. These metrics arise naturally as spacelike timeslices for solutions of the Einstein equation with a negative cosmological constant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008